首页> 外文OA文献 >Transformation of Hand-Shape Features for a Biometric Identification Approach
【2h】

Transformation of Hand-Shape Features for a Biometric Identification Approach

机译:用于生物识别方法的手形特征的转换

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The present work presents a biometric identification system for hand shape identification. The different contours have been coded based on angular descriptions forming a Markov chain descriptor. Discrete Hidden Markov Models (DHMM), each representing a target identification class, have been trained with such chains. Features have been calculated from a kernel based on the HMM parameter descriptors. Finally, supervised Support Vector Machines were used to classify parameters from the DHMM kernel. First, the system was modelled using 60 users to tune the DHMM and DHMM_kernel+SVM configuration parameters and finally, the system was checked with the whole database (GPDS database, 144 users with 10 samples per class). Our experiments have obtained similar results in both cases, demonstrating a scalable, stable and robust system. Our experiments have achieved an upper success rate of 99.87% for the GPDS database using three hand samples per class in training mode, and seven hand samples in test mode. Secondly, the authors have verified their algorithms using another independent and public database (the UST database). Our approach has reached 100% and 99.92% success for right and left hand, respectively; showing the robustness and independence of our algorithms. This success was found using as features the transformation of 100 points hand shape with our DHMM kernel, and as classifier Support Vector Machines with linear separating functions, with similar success.
机译:本工作提出了一种用于手形识别的生物识别系统。已经基于形成Markov链描述符的角度描述对不同的轮廓进行了编码。离散隐马尔可夫模型(DHMM)均已使用此类链进行了训练,每个隐马尔可夫模型(DHMM)均代表目标识别类。已经根据HMM参数描述符从内核计算了特征。最后,使用监督的支持向量机对DHMM内核中的参数进行分类。首先,使用60个用户对系统进行建模,以调整DHMM和DHMM_kernel + SVM配置参数,最后,使用整个数据库(GPDS数据库,144个用户,每类10个样本)检查系统。我们的实验在这两种情况下均获得了相似的结果,证明了可扩展,稳定且强大的系统。我们的实验在训练模式下每班使用三个手样本,在测试模式下使用七个手样本,对GPDS数据库的最高成功率为99.87%。其次,作者使用另一个独立的公共数据库(UST数据库)验证了他们的算法。我们的方法分别达到了左右手100%和99.92%的成功率;展示了我们算法的鲁棒性和独立性。通过使用我们的DHMM内核转换100点手形作为特征,以及作为具有线性分离功能的分类器支持向量机,也获得了类似的成功。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号